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some CBED contrast, and must be from a medium- 
thick 200-300 A region. The lattice image formed from 
this pattern shows a very marked departure from the 
hexagonal symmetry shown in the image of Fig. 11 (a) 
which was obtained with a much reduced beam 
convergence (as in Fig. 1 lb) and from a thinner region 
of the sample. Fig. 10(a) shows an image composed of 
diamond-shaped cells which bear no obvious relation- 
ship to a real-space projection. This phenomenon has 
been reported in summary (Goodman, Moodie, 
Whitfield, Morton & Rossouw, 1982) but without 
showing the corresponding diffraction patterns from 
which the images were obtained. Examination of Fig. 
10(b) shows that reciprocal space is largely filled with 
reflexion intensities, due to the high beam convergence, 
and that we are as much imaging individual reflexions 
as we are imaging superposed orders in the usual 
understanding of (parallel illumination) lattice imaging. 
The superposition of such an amount of angular 
information must be difficult to interpret except in 
terms of symmetry, and this is just an extreme example 
of the phenomenon often noted, that thick-crystal 
images are difficult to match against those computed, 
even when beam convergence is taken into the 

calculation, to some approximation. Fig. 10(b) suggests 
that some of this difficulty must arise from an extreme 
sensitivity to the precise placement of both the 
condenser and the objective apertures, as well as to the 
fact that a substantial background of diffuse intensity 
fills the region remaining between diffraction orders. It 
is noted, however, that the crystal region is still 
substantially thinner than that used for Fig. 1 where 
there is a marked intensity fringe structure within each 
disc. It is well known, however, that angular phase 
modulation appears within the discs at an earlier stage 
of thickness than that required for intensity modulation. 
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Abstract 

With the Debye continuum model an analytical 
expression is derived for the X-ray Debye temperature 
(0 u) of a hexagonal crystal in terms of the elastic 
constants and this expression is used to calculate 0 u for 
hexagonal crystals of 41 elements and compounds. 
Calculated results by numerical integration are also 
presented for the X-ray Debye temperature perpen- 
dicular to the hexad axis, 01, and that parallel to it, 0~j. 
The calculated results are compared with experimental 
values, wherever data are available. A correction factor 
for the effect of dispersion is determined from the 
experimental data. 

Introduction 

The Debye-Waller factor is an important parameter in 
the description of a solid entering into the analysis of 
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numerous solid-state properties (Blackman, 1955; 
Maradudin, Montroll, Weiss & Ipatova, 1971; Willis & 
Pryor, 1975; Wertheim, 1968; Lipkin, 1961)including 
the scattering factors for X-rays, neutrons and 
electrons (both in electron diffraction and the incoher- 
ent scattering of conduction electrons) in addition to 
the recoilless fraction in M6ssbauer experiments. 

However, there is a scarcity of experimental data on 
Debye-Waller factors or equivalently X-ray Debye 
temperatures in the literature, particularly in the case of 
non-cubic crystals. This scarcity may be ascribed, at 
least in part, to the numerous difficulties in the 
collection and analysis of the appropriate data (Herbs- 
tein, 1961), which are compounded for non-cubic 
crystals by the fact that in such systems the Debye- 
Waller factors are anisotropic. In the analysis of results 
based on X-ray and neutron diffraction, corrections are 
necessary for thermal diffuse scattering. These are 
complicated by the fact that the thermal diffuse 
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scattering displays exceptional behaviour under Bragg 
peaks, itself peaking for X-rays (Zachariasen, 1969) 
and faster than sound neutrons. Furthermore, the 
interpretation of X-ray diffraction measurements is 
additionally complicated by the effect of Compton 
scattering, extinction, and anisotropic atomic scattering 
lengths. While determinations of Debye-Waller factors 
using M6ssbauer measurements are not subject to the 
above difficulties, the number of isotopes suitable for 
such investigations is limited. Results based on 
M6ssbauer measurements using a low concentration of 
a suitable isotope in a host lattice yield information 
regarding the lattice dynamical properties of an 
impurity atom in the host lattice, from the analysis of 
which the Debye-Waller factor of the host lattice can 
be obtained only by making questionable assumptions 
regarding the coupling of the impurity to the host 
lattice. 

The Debye model has served as some sort of a 'base' 
for many solid-state investigations. However, it is 
known that it is inadequate for predicting X-ray Debye 
temperatures: in general it leads to values larger than 
those for actual solids. Hewat (1972) has proposed a 
model for calculating X-ray Debye temperatures in 
which acoustic modes are represented by sinusoidal 
dispersion relations. Treating any optical modes as 
continuations of acoustic modes, a reasonable approxi- 
mation for simple compounds whose constituent atoms 
have similar masses, this results in X-ray Debye 
temperatures lower by a constant factor 1/(2 In 2) 1/2 _ 
0.85 than those predicted by a dispersionless model. 
This constant 0.85 may be considered to be a sort of 
correction factor to allow for the dispersion. 

In the present paper, using the Debye continuum 
model, we derive an analytical expression for the X-ray 
Debye temperature, 0 u ,  for a hexagonal crystal in 
terms of the elastic constants and calculate O u for 41 
hexagonal crystals. Calculated results, by numerical 
integration, are also presented for the X-ray Debye 
temperature perpendicular to the hexad axis, 0±, and 
that parallel to it, 0,. Wherever feasible, the calculated 
results are compared with experimental values. The 
correction factor for the effect of dispersion is 
determined from the experimental data. 

Theory 

For a general harmonic crystal the temperature factor 
for the xth atom in the unit cell is given by (Willis & 
Pryor, 1975): 

T~(Q) = exp [--½ <(Q.u~)2)], (1) 

where u~ is the displacement of the xth atom in the unit 
cell, Q is the scattering vector, Q = 4n (sin 0/2). n. For 
X-ray scattering, 0 being the Bragg angle, 2 the 
wavelength of the X-rays and n a unit normal to the 
scattering plane. 

Since the scattering vector is time independent it may 
be removed from the average, 

T~(Q) = exp (-½Q r B~ Q), (2) 

u~). In general the B~ matrix has six where B~ = <u~ r 
independent components. However, for hexagonal 
crystals, symmetry requirements reduce this number to 
two. In an orthogonal basis with the z axis coinciding 
with the hexad direction, the B~ matrix may be written 
as (Willis & Pryor, 1975) 

= , 

0 

where (Ua 2) is the mean-square displacement along a 
direction perpendicular to the hexad axis and <u 2) is 
the mean-square displacement parallel to the hexad 
axis. 

It is often convenient to express the temperature 
factor in terms of an effective mean-square displace- 
ment, (U2)efr, for the direction of the scattering vector 
in question. For hexagonal crystals <uE)err is given by: 

<U2)erf = <u 2) sin 2 0 + <u 2) cos 2 0, (3) 

where 0 is the angle between the hexad direction and the 
scattering vector, Q~. Thus 

T,, (Q) = exp (_½Q2 <U2)efr), (4) 

and from a knowledge of <u 2) and <u2), the tempera- 
ture factor can be easily calculated for any. scattering 
vector. 

The B~ matrix can be calculated by applying 
Bose-Einstein statistics to a crystal's normal modes 

1 he , , ( j q )  e r ( j q )  

B,,- Z 
m ,, N O)jq 

J q  

X + " , 

exp (hco jq /kT)  - 1 

where Ogjq is the angular frequency of a normal mode 
with wavevector q, e~(jq) is the polarization vector of 
the normal mode COjq for the xth atom in the unit cell, 
and T is the temperature of the lattice. 

Although the Debye theory of lattice vibrations is a 
considerable simplification, experimental results are 
often expressed in terms of it because it leads to a single 
characteristic parameter, the Debye temperature, which 
varies relatively slowly with temperature. 

For a true Debye solid, the Debye temperature 
appropriate for different thermodynamic averages 
would be the same, and temperature independent. 
However, for real solids, because of the different 
averages involved, each property involves a different 
Debye temperature which is temperature dependent 
(Salter, 1965). Moreover, for tensor properties such as 
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the mean-square displacement, the Debye tempera- 
tures involve tensors of the same rank. 

In the Debye continuum model, dispersion is 
neglected and the frequency to is directly proportional 
to the wavevector q, 

to = v o q, (5) 

where v 0 is a constant. For real solids, this is valid only 
for very small to. For the specific heat C v, as T -* 0 K, 
only low-energy modes contribute and the Debye 
approximation becomes exact, and thus the Debye 
temperature calculated from the elastic constants 
becomes equal to the calorimetric Debye temperature 
at 0 K. However, the average appropriate for the 
mean-square displacement matrix is such that all 
modes contribute even at absolute zero as a result of 
the zero-point energy contribution. Thus even in this 
limit, the Debye approximation is not exact. At high to, 
the dispersion curves for real solids show considerable 
departure from (5). Consequently, the X-ray Debye 
temperature calculated from the elastic constants will 
differ from the actual X-ray Debye temperature. We 
shall introduce a correction factor later on to allow for 
this difference. 

For a hypothetical dispersionless crystal with hex- 
agonal symmetry the value of the characteristic tem- 
perature is given in terms of the velocities of long- 
wavelength elastic waves, 

el _ _  h 3(4_~) 1/3 
OM -- -~ V.,, (6) 

where h is the Planck's constant, k is the Boltzmann 
constant, N / V  is the number density of atoms and v,,, is 
an average velocity. The values of v for 0,,, 0j_ and 0, the 
equivalent isotropic Debye temperature, are given by 
v,,,,,, v,,,± and v m respectively: 

if± V2ml, = COS 2 0 l ( a  ) --1 

,__, v (a) 

[y :/: sine o, o,  °1-1 
1=1 v~(~) 4zr ] 

and 

V'n= v~(O) 4~ ' 
t=1  

where the sum on i is over the three elastic modes and 
0t(£2 ) is the angle between the polarization vector of the 
elastic wave velocity vi(S2) and the hexad axis, ~Q 
defining the direction of the wave vector. 

The wave velocities and polarization vectors are the 
solutions of an eigenvalue problem (Musgrave, 1970), 

( F -  2 i I) e i = 0, (7) 

where e~ is the polarization vector, 2~ is the eigenvalue 
for e i and is given by 2 i = pv](.O) - c44, I is the identity 
matrix, and 

F =  

where 

( 12 ) n2A +I~n2 C nlnEG n~naD 

nl//2 G ~n 2 C + n2A //2 n3 D 

n~ n a D //2//3 D n 2 H 

A = e l l  - c44 , 

O = C13 + C44 , 

n = c33 - -  c44 , 

C = e l l  - c12 - 2¢44  , 

G = ½(Cll + Cl2 ), 

ctj's are the elastic constants of the crystal, p is the 
density and (n~ r/2 l l 3 )  a unit vector specifying the polar 
angle, .(2. 

Writing n 2 -- n 2 -- cos 2 0 and m = (1 - //2)1/2, we 
have 

21 = ½m 2 C 

22=½(m2A + n 2 H ) +  [¼(m2A + n2H) 2 

+ n 2 m2(D 2 _ AH)I 1/2 

23= ½(m2A + n 2 H ) - [ ] ( m 2 A  + n2H) 2 

+ n 2 m2(D 2 _ AH)]I/2 

The corresponding eigenvectors for n I = 0 are 

e I = (1,0,0) 
e2 = (0, cos ~,, --sin ~,) 
e 3 = ( 0 ,  sin ~,, cos ~), 

where 

m[ 
tan ~ =- -n  m--~ --- " 

Note that the only angular dependence is on cos 2 0 
and sin 2 8, so that it is not required to integrate on ~,. 
Thus 

~ ' [ c ° s ~  sin2~ sinOdO j ÷ %-7- 

[ ~t/2, 1 sin 2 Ip' COS 2 ~ )  

x sin 0 dO/-1 
~/2 1 t v,,, = \~-12 + v---~- + v--~- sin 0 dO 
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Table 1. Calculated and experimental values of X-ray 
Debye temperatures in K SoUd ~' 

The first row of values given for each element or compound gives CeF3 387.2 
the theoretical values. The experimental values are given in square Cd3Mg 178.8 
brackets and those determined from neutron scattering and SmC°5 335.2 
M6ssbauer experiments are identified by (N) and (M) respectively. [ 281 q 
Experimental values without any identification are from X-ray CsCuC13 233.8 

experiments. 

Solid ~l 0~1 ~M l 

Be 1442.4 1538.9 
Mg 374.1 380.1 

[ 3294 3034 
Zn 365.7 269.7 

I317  + 35c 7c 
-- 25 (M)  1 8 0 _  + 6 (M)  

215 a (M) 
Cd 223.8 169.4 

[ 166 a 97 a 
TI-1 70.5 95.5 
TI-2 70.3 96.2 
Se 367.9 376.2 
Y 249.4 252.6 
Graphite 1338.2 290.8 

I1300 + 210e t~-~ 100e 
--110 ~" '  670_ +70 (N) 

Ti 395-8 435"0 

E 
Zr 281.0 292.5 

[ 
Hf 244.3 253.7 

[ 192 + 13 t(M) 227 + 10 t(M) 
Re 400.3 413.8 

[ 
Co 455.4 493.3 
Ru 515.6 502.1 

[ 
Pr 150.6 160.7 
Nd 157.2 164.6 
Gd 173.9 177.3 
Tb 175.4 179.2 

[ 
Dy 181.3 185.0 
Ho 184.2 187.7 

[ 147+9 t 147+9 t 
Er 189.3 191.7 
Lu 182.3 180.7 
AgI 134.4 172.6 

[ 
BeO-1 1299.9 1309.2 
BeO-2 1275.5 1309.2 

E 
ZnO 429.9 437.2 
ZnS 355.3 368.0 
ZnTe 224.7 226.2 
CdS 220.2 227.9 
CdSe 182.1 190.6 
MnAs 234.2 318.4 
SiC 1189.7 1197.9 
TbHo 200.3 206.3 
SiO2* 589.0 548.1 
CaMg 2 368.3 371.1 
Cd2Mg 165.1 161.6 
MgZn 2 312.9 328.8 
TiB 2 1033.7 1005.6 

1472.5 
376.2 
315 b ] 
323.3 

200.3 
1 

76.6 
76.5 

370.6 
250.5 
481.5 

407.6 
270 + 30 f "] 
350 + 40 g (M)J 
284.7 
243 h ] 
247.3 

] 
404.7 
291 + 10 j (M)] 
467.0 
512.7 
350 b ] 
153.8 
159.6 
175.0 
176.6 
170 __ 11 k (M)] 
182.5 
185.4 
147 + 9 t] 
190.1 
181.8 
144.2 
119 m ] 

1303.0 
1286.4 
1120" (N)  -1 
1199 ° (N) J 875 +_ 13 p (N) 
432.3 
359.4 
225.2 
222.7 
184.8 
254.4 

1192.4 
202.2 
574.4 
369.2 
163.9 
317.9 

1024.0 

Table 1. (cont.) 
0~, I 

402.0 391.9 
170.3 175.8 
353.8 341.1 
264 q 
305.4 251.8 

References: (a) Watanabe, Iwasaki & Ogawa (1971); (b) von Brill 
& Chopra (1962); (c) Kiindig, Ando & B6mmett (1965); (d) 
Housley & Nussbaum (1965); (e) Ludsteck (1972), 300 to 1150 K; 
(f)  Spreadborough & Christian (1959); (g) Moyzis, De Pasquali & 
Drickamer (1968); (h) Korsunskii, Genkin & Vigdorchuk (1971); 
(i) Boolchand, Robinson & Jha (1969), at 4 K; (j) Radeshfitz & 
Langhoff (1976), at 9 K; (k) Enders, Weiss & Langhoff (1978), at 
9 K; (/) Skelton (1969); (m) Burley (1964); (n) Pryor & Sabine 
(1964); (o) Sabine & Hogg (1968); (p) Kuleshov, Sadikov & 
Sokolova (1963); (q)Jennings & Chipman (1973), 300 to 1200 K. 

* Elastic constant data at 873 K. 

The last integral  can be evaluated analyt ical ly .* The 
integrals for 2 and 2 Vm, Vm± are not amenable  to analyt ica l  
evaluation.  

D a t a  

The major i ty  of  experimental  da ta  on D e b y e - W a l l e r  
factors for hexagonal  crystals  are from measurements  
at room temperature .  Thus  the Debye  tempera tures  
were calculated at room temperature  to facilitate the 
compar i son  with experimental  values. In the quasi- 
ha rmonic  theory  the appropriate  elastic cons tants  for 
this purpose  are those at room temperature  (Boyle & 
Hall,  1962), and thus  room-tempera ture  elastic con- 
stants  were used. The experimental  elastic cons tan ts  
employed in the calculat ions were taken from the 
compilat ion of  H e a r m o n  (1979). For  T1 and BeO, two 
sets of  elastic cons tants  have been reported,  which 
differ f rom each other  and appear  to have the same sort 
of  accuracy ;  calculat ions were carried out  for both sets 
and these are represented by T1-1 and T1-2, and BeO-1 
and BeO-2 in Table  1. The density was taken from 
s tandard  sources (Gray ,  1972; Weast ,  1978). 

For  calculat ing 0 u, the analyt ical  expression men- 
t ioned in the previous section was used, but  for 8± and 
0,, numerical  integrat ion had to be used. The results 
are shown in Table  1 and, where data  are available, 
compared  with experimental  X- ray  Debye  tem- 
peratures.  The experimental  values determined from 
neutron scat tering and M6ssbauer  experiments  are 
identified by (N)  and (M)  respectively. 

* The analytical solution has been deposited with the British 
Library Lending Division as Supplementary Publication No. SUP 
38031 (3 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH 1 2HU, England. 
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Table 2. Values of  the ratio 0(expt.)/0 et 

Solid 0± (expt.)/0~ 0,(expt.)/0Yt I 0M(expt.)/6~M~ 

Mg 0"879 0.797 0.837 
Zn 0.867 0.667, 0.797 
Cd 0.742 0.573 
Graphite 0.971" 2.30* 
Ti 0.662, 0.859 
Zr 0.854 
Hf 0.786 0.895 
Re 0.719 
Ru 0.683 
Tb 0.963 
Ho 0.798 0.783 0.793 
AgI 0.825 
BeO 0.865, 0.926, 0.676* 
SmCO 5 0.839 0.746 

* Not used in taking the average. 

Discussion 

It will be noticed from Table 1 that the experimental 
values of X-ray Debye temperatures are lower than the 
corresponding theoretical ones obtained from the 
elastic constants. The only exception to this behaviour 
is for graphite. As noted in the Introduction, an 
approximate theoretical model suggests a correction 
factor of 0.85 by which 0u calculated from the Debye 
theory should be multiplied to allow for the dispersion. 
Here we shall determine this correction factor from the 
experimental data. In Table 2 we show the ratio 
0(expt.)/0 el for cases for which experimental values are 
available. 

There are considerable uncertainties in the ex- 
perimental values of the X-ray Debye temperature, as 
can be seen from the example of cases where two or 
more experimental values are available for the same 
solid. In view of this, we have obtained the correction 
factor by taking a global mean of all the ratios, except 
those for graphite and one of the values for BeO which 
is in serious disagreement with the other two values for 
this compound. The global mean is 0.80 + 0.09. This is 
in fair accord with the theoretical estimate. The 
theoretical values for 0 for substances for which there 
are no experimental data can serve two purposes. If 
and when experimental data become available for 
these substances, the listed theoretical values could be 
used to obtain the correction factor. Also, these values 
multiplied by 0.80 will provide a good estimate for 0 
for actual crystals. The exceptional behavior of 
graphite appears to be due to its high anisotropy. 

This work was supported by the Natural Sciences 
and Engineering Research Council of Canada. 

References 

BLACKMAN, M. (1955). Encyclopedia of Physics, Vol. VII/l, 
edited by S. FLUGGE. Berlin: Springer. 

BOOLCHAND, P., ROBINSON, B. L. & JHA, S. (1969). Phys. 
Rev. 187, 475-478. 

BOYLE, A. J. F. & HALL, H. E. (1962). Rep. Prog. Phys. 25, 
441-524. 

BRILL, R. VON • CHOPRA, K. L. (1962). Z. Kristallogr. liT, 
321-330. 

BURLEY, G. (1964). J. Phys. Chem. Solids, 25, 629-634. 
ENDERS, G., WEISS, n .  & LANGHOEE, H. (1978). Z. Phys. 

A285, 121. 
GRAY, D. E. (1972). American Institute of Physics 

Handbook. New York: McGraw-Hill. 
HEARMON, R. F. S. (1979). In Landolt-Bfrnstein Numerical 

Data and Functional Relationships in Science and 
Technology, Vol. III/11. New York: Springer Verlag. 

HERBSTEIN, F. H. (1961).Adv. Phys. 10, 313-355. 
HEWAT, A. W. (1972). J. Phys. C, 5, 1309-1316. 
HOUSLEY, R. M. & NUSSBAUM, R. H. (1965). Phys. Rev. 

138, A753-A754. 
JENNINGS, L. D. & CHIPMAN, D. R. (1973). AIP Conf. Proc. 

18, 1187-1191. 
KORSUNSKn, M. I., GENKIN, YA. E. & VIGDORCHUK, L. I. 

(1971). Fiz. Tverd. Tela, 13, 913-914; Soy. Phys. Solid 
State, 13, 761-762. 

KULESHOV, I. M., SADIKOV, G. C. & SOKOLOVA, Z. A. 
(1962). Zh. Fiz. Khim. 36, 1369-1370; Russ. J. Phys. 
Chem. 36, 732-733. 

KUNDIG, W., ANDO, K. & BOMMETT, H. (1965). Phys. Rev. 
139, A889-A891. 

LWKIN, H. J. (1961). Phys. Rev. 123, 62-63. 
LUDSTECK, A. (1972). Acta Cryst. A28, 59-65. 
MARADUDIN, A. A., MONTROLL, E. W., WEISS, G. H. & 

IPATOVA, I. P. (1971). Theory of Lattice Dynamics in the 
Harmonic Approximation, 2nd ed. New York: Academic 
Press. 

MoYzIS, J. A. JR, DE PASQUALI, G. & DRICKAMER, H. G. 
(1968). Phys. Rev. 172, 665-670. 

MUSGRAVE, M. J. P. (1970). Crystal Acoustics. San 
Francisco: Holden Day. 

PRYOR, A. W. & SABINE, T. M. (1964). J. Nucl. Mater. 14, 
275-281. 

RADESHOTZ, E. & LANGHOFF, H. (1976). Z. Phys. B25, 
37-39. 

SABINE, T. M. & HOGG, S. (1968). Acta Cryst. 25, 
2254-2256. 

SALIER, L. S. (1965). Adv. Phys. 14, 1-37. 
SKELTON, E. F. (1969). J. Appl. Cryst. 2, 106-108. 
SPREADBOROUGH, J. & CHmSTIAN, J. W. (1959). Proc. 

Phys. Soc. 74, 609-615. 
WATANABE, Y., IWASAKI, H. & OGAWA, S. (1971). Jpn. J. 

Appl. Phys. 6, 786-793. 
WEAST, R. C. (1978). Handbook of Chemistry and Physics. 

Cleveland: The Chemical Rubber Co. 
WERTHEIM, G. K. (1968). Mdssbauer Effect: Principles and 

Applications. New York: Academic Press. 
WILLIS, B. T. M. & PRYOR, A. W. (1975). Thermal 

Vibrations in Crystallography. Cambridge Univ. Press. 
ZACHARIASEN, W. H. (1969). Acta Cryst. A25, 276. 


